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Mott insulator–high Tc bipolaronic
superconductor transition in cuprates

B y A. S. Alexandrov
Department of Physics, University of Loughborough, Loughborough LE11 3TU, UK

All ‘undoped’ cuprates are antiferromagnetic Mott insulators. We argue that with
doping they remain insulators including the ‘overdoped’ samples. Hence, there is no
clear dividing line between non-metallic cuprates and high-temperature supercon-
ductors. Based on the generic Hamiltonian including the electron–phonon interaction
and the direct Coulomb repulsion the ground state of doped cuprates is shown to be
a charged 2e Bose liquid of small bipolarons. A theory of the normal state transport
of copper oxides is developed. The temperature dependence of the resistivity and of
the Hall effect agrees remarkably well with the experimental data in La2−xSrxCuO4
for the entire temperature regime including unusual ‘logarithmic’ low-temperature
region. The violation of Kohler’s rule in magnetoresistivity is explained. The resistive
and thermodynamic superconducting transitions in a magnetic field are quantitative-
ly described.

Keywords: bipolarons; insulator–superconductor transition;
cuprates; Mott insulators

1. Introduction

Are the high-Tc materials metals? The answer to this question depends on how one
defines a metal (Mott 1996, personal communication). To give a definite answer one
has to extrapolate the conductivity to zero temperature. Metals show the finite low-
temperature conductivity while this conductivity is zero in non-metals. With this
definition, of course, any superconductor must be a metal, because the conductivity
at T = 0 is infinite. Fortunately, one can destroy the superconducting state by an
external magnetic field to measure a ‘true’ normal state conductivity up to a very low
temperature. The experiment has recently been done by applying a pulsed 61 T mag-
netic field (Ando et al. 1995; Boebinger et al. 1996). The underdoped and optimally
doped high-Tc cuprates studied so far appear to be doped three-dimensional insula-
tors with the divergent resistivity at low temperatures. This observation as well as
many others support a large body of opinions which believes that high-temperature
superconductivity, first discovered in cuprates by Bednorz & Müller (1986), is linked
to small polarons and bipolarons (see, for example, Müller 1995; Salje et al. 1995)
proposed by us as a possible explanation of high-Tc phenomenon (Alexandrov 1987).
The bipolaronic ‘scenario’ for high-Tc cuprates is based on the fact that ‘undoped’
cuprates have normally one hole per unit cell in the copper–oxygen plane. If the
electron–electron interaction and a lattice distortion due to the electron–phonon
coupling were weak, these compounds would be Fermi liquids. In fact, they are Mott
insulators and remain to be insulators if doped which leads to the polaronic and
bipolaronic carriers.
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The concept of polarons was introduced into physics by Landau (1933), who point-
ed out that an electron in the conduction band of a non-metallic ionic crystal could
be trapped by ‘digging its own potential hole’. Mott (1973) discussed a degenerate
gas of small polarons while Alexandrov & Ranninger (1981) introduced the idea of
small mobile bipolarons into the theory of superconductivity. Carriers are polarons
in many doped semiconductors which may be envisaged as mobile clusters of the lat-
tice deformation (dielectric polarons) and (or) of magnetic moments oriented in the
opposite direction to that of the carrier (spin polarons). The Fermi-liquid behaviour
is destroyed by the strong electron–phonon and electron-spin fluctuation interactions
due to the polaron collapse of the band resulting in the non-adiabatic heavy carriers.
The ground state of such carriers appears to be a bipolaronic charged Bose liquid if
the coupling with phonons (the BCS coupling constant) λ > 0.5 (Alexandrov & Mott
1995). The strong electron–electron correlations play important role in the polaron
formation decreasing the bare bandwidth and therefore increasing λ. This conclu-
sion is perfectly confirmed by the numerical calculations within the Peierls–Hubbard
and Holsten t–J models (Bishop & Salkola 1995; Fehske et al. 1995). We believe
that (bi)polarons are a key element for the understanding of the unusual normal
and superconducting state properties of cuprates and doped fullerenes (Alexandrov
& Mott 1994). In this paper I discuss the normal state transport and the super-
conducting transition of cuprates considering them as doped insulators with the
bipolaronic carriers partly localized by disorder.

2. Normal state bipolaron kinetics of high-Tc cuprates

(a ) Temperature dependence of the Hall effect and resistivity
The absolute value and the temperature dependence of the in-plane and c-axis

resistivity as well as of the Hall effect are recognized as the key to our understanding
of the high-Tc phenomenon (Anderson 1995; Alexandrov & Mott 1994). They do not
agree with any Fermi-liquid description. To meet this challenge some authors alleged
the spin-charge separation abandoning the Fermi-liquid and Boltzmann approach.

However, there is no need to abandon the Boltzmann kinetics to explain the linear
in-plane resistivity and the temperature dependent Hall effect above Tc in cuprates
if the bipolaron theory is applied. A fraction of bipolarons is localized by disorder, so
that the number of delocalized carriers is proportional to T while the boson–boson
inelastic scattering rate is proportional to T 2. This allows us to explain that both
the in-plane resistivity and the Hall density are proportional to T (Alexandrov et
al. 1994). Recently we have extended the theory towards low temperatures (Alexan-
drov 1997) where the transport relaxation time of bipolarons is determined by the
elastic boson-impurity scattering and single polarons are frozen out. The tempera-
ture dependence of the resistivity appears to be in a remarkable agreement with the
experimental dependence measured in La2−xSrxCuO4 by suppressing Tc down to a
mK scale with a pulsed magnetic field.

The low-energy state of cuprates is a mixture of the intersite in-plane singlet
pairs (small bipolarons) and thermally excited polarons. Above Tc, which is the con-
densation temperature of the charged Bose-gas, these carriers are non-degenerate.
Intersite singlets tunnel along the planes with an effective mass m∗∗ab of the order
of a single-polaron mass (Alexandrov 1996). Their c-axis tunnelling involves the
simultaneous hopping of two holes. Therefore the singlet c-axis mass is strongly
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Figure 1. The Hall effect in La2−xSrxCuO4 (triangles (Hwang et al. 1994)) described by the
theory (solid line) for x = 0.15.

enhanced, m∗∗c � m∗∗ab, which leads to a large transport anisotropy at low temper-
atures when polarons are frozen out. However, at temperatures below the c-axis
bipolaron bandwidth we expect a three-dimensional anisotropic energy spectrum
and a three-dimensional scattering of bipolarons dominated by the lattice defects
and impurities. The number of extended bosons nb(T ) above the mobility edge is
determined in the ‘single-well–single-particle’ approximation as (Alexandrov et al.
1994)

nb(T ) = 1
2x− nL(T ), (2.1)

where 1
2x is the total number of pairs, and nL(T ) ' nL −NL(0)T is the number of

bosons localized by the random potential with NL(0) the density of localized states
near the mobility edge. The Hall coefficient RH measures the inverse carrier density,
so that

RH

RH0
=

1
1 + T/TL

, (2.2)

where TL = (x− 2nL)/2NL(0). This simple expression fits well to the Hall coefficient
temperature dependence of La2−xSrxCuO4 at optimum doping (x = 0.15) as shown
in figure 1 with TL = 234 K and the constant RH0 = 2 × 10−3 cm3 C−1. If the total
number of carriers 1

2x is above the total number of the potential wells nL, which
is assumed here, the carrier density is practically temperature independent at low
temperatures. Hereafter, h̄ = kB = 1.

The normal state of the bipolaronic superconductor is reminiscent to that of a
non-degenerate semiconductor. The characteristic kinetic energy of carriers appears
to be of the order of the temperature rather than of the Fermi energy of usual metals.
The most effective scattering at low temperatures is then caused by the attractive
shallow potential wells which for slow particles is described by the familiar Wigner
resonance cross-section (see, for example, Landau & Lifshitz 1991)

σ(E) =
2π
m

1
E + |ε| . (2.3)
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Here

ε = − 1
16π

2Umin

(
U

Umin
− 1
)2

, (2.4)

is the energy of a shallow virtual (U < Umin) or real (U > Umin) localized level, U the
well depth and Umin = π2/8ma2 with the well size a. The transport relaxation rate
is the sum of the scattering cross-sections from different potential wells within the
unit volume multiplied by the velocity v =

√
2E/m. There is a wide distribution of

potential wells with respect to both U and a in real cuprates. Therefore, one has to
integrate the Wigner cross-section, equation (2.5), over U and over a. By doing the
integration over U we take into account only shallow wells with U < Umin because the
deeper wells are occupied by localized carriers and cannot yield a resonant scattering.
The result for the inverse mean free path is

l−1(E) =
nL

A

∫ ∞
amin

〈σ(E)〉 da ' π2NL(0)
mA
√

2mE
ln
E0

E
, (2.5)

for E � E0. Here A is the width of the size distribution of the random potential,
NL(0) ' nL/γ, E0 = π4/128ma2

min and amin is the minimum size. We expect a very
large value of A of order of a few tens of Å due to the twin boundaries and impurity
clusters in real cuprates which are not screened. On the other hand, single impurities
are screened. A simple estimate of the screening radius yields a value of amin of the
order of the interatomic spacing (approximately 1.9 Å), which corresponds to a quite
large E0 = 1500 K if m = 10me. As a result, in a wide temperature range we arrive
at the logarithmic transport relaxation rate as

1
τ
≡ vl−1(E) =

1
τ0

ln
E0

E
, (2.6)

where τ0 = m2A/π2NL(0) is a constant. Because the Wigner formula is somewhat
more general than the assumption made in its derivation we expect that the obtained
logarithmic dependence is not changed if the random potential is modified and the
energy spectrum is highly anisotropic under the condition that we take m = m∗∗ab.

The low-temperature resistivity is now derived by the use of Boltzmann theory as

ρ(T ) = ρ0 ln
E0

T
, (2.7)

where ρ−1
0 = 2(x − 2nL)e2τ0/m. At high temperatures the inelastic scattering of

extended bosons by localized bosons becomes important so that

1/τ = αT 2, (2.8)

with the constant, α, proportional to the density of states at the mobility edge,
NL(0) squared. Combining both elastic, equation (2.6), and inelastic, equation (2.8),
scattering, and taking into account the temperature dependence of the extended
boson density nb(T ), equation (2.1), we arrive at

ρ(T )
ρ0

=
ln(E0/T ) + (T/TB)2

1 + T/TL
, (2.9)

with the constant TB = 1/
√
ατ0. The solid line in figures 2 and 3 is a fit to the

experimental data with ρ0 = 7.2 × 10−5 Ω cm, E0 = 1900 K and TB = 62 K which
appears to be remarkably good. The value of E0 agrees well with the estimate above.
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Figure 2. The ‘ab’ resistivity of La2−xSrxCuO4 with x = 0.13 (diamonds (Ando et al. 1995))
described by the theory in a wide temperature range (solid line).

Figure 3. The same as in figure 2 at low temperatures.

Because the bipolaron energy spectrum is three dimensional at low temperatures,
there is no temperature dependence of the anisotropy ρc/ρab at low T as observed.

The crucial point of our theory is that polarons dominate in the c-axis transport at
intermediate and high temperatures because they are much lighter in the c-direction
than bipolarons. Along the planes they propagate with about the same effective
mass as singlets. Therefore their contribution to the ab transport is small at any
temperature due to their low density compared with the bipolaron one. As a result
we have a mixture of the non-degenerate quasi-two-dimensional spinless bosons and
the thermally excited fermions, which are capable of propagating along the c-axis.
Only polarons contribute to the spin susceptibility and to the c-axis transport if the
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temperature is not very low which leads to a simple fundamental relation explaining
the anisotropy, the magnetic susceptibility and a so-called normal state ‘pseudo-gap’
(Alexandrov et al. 1996a).

(b ) Violation of Kohler’s rule
The bipolaron theory provides the most natural microscopic explanation of the

anomalous magnetoresistance (MR) observed by Harris et al. (1995).
Because within our approach, high-Tc cuprates are doped semiconductors with

the non-degenerate carriers above Tc the weak-field MR is described by the classical
formula (Anselm 1962), ∆ρ/ρ = KH2/ρ2, with the slope

K = βR2
H, (2.10)

and

β ≡ ∆ρ
ρΘ2

H
=
〈τ3

tr〉〈τtr〉
η〈τ2

tr〉2
− 1. (2.11)

Here 〈· · ·〉 means an average with the Boltzmann distribution function, for instance
〈τtr〉 =

∫
dEN(E)Eτtr(E) exp(−E/T ), N(E) the density of states and η =

4m∗∗x m
∗∗
y /(m

∗∗
x + m∗∗y )2 describes the in-plane anisotropy of the bipolaron energy

spectrum as derived by Alexandrov (1996). For a low amount of disorder we expect
η = 0.64 due to a difference in ppπ and ppσ ‘oxygen–oxygen’ hopping integrals, while
in strongly disordered cuprates η might be significantly smaller. By the use of the
ratio of the chemical and Hall carrier densities we found η 6 0.1 in the overdoped
La2−xSrxCuO4. The inelastic scattering rate of delocalized carriers by localized ones
is proportional to the square of the phase volume available for the scattering, so that
τtr ∼ (T+E)−2 if the density of states N(E) near the mobility edge is about constant
as discussed above. As a result, one obtains β = [9 eEi(−1)/20η(1 + 2 eEi(−1))]− 1,
where eEi(−1) ' −0.596. This yields the temperature independent constant β ' 1.2
with η = 0.64 and β ' 13.0 with η = 0.1 which is fairly close to the observed values,
β ' 1.5–1.7 in YBa2Cu3O7−δ and β ' 13.6 in La2−xSrxCuO4. By taking into account
the Anderson localization the Hall ‘constant’ is given by RH ∼ 1/T well above Tc as
shown above. Then equation (2.10) provides a parameter-free fit to the experimental
data, figure 4, explaining the violation of Kohler’s rule.

3. Thermodynamic versus resistive transition in a magnetic field

The bipolaron theory (Alexandrov 1993) has successfully predicted the divergent
resistive Hc2(T ) on cooling (see, for example, Alexandrov et al. 1996b; and references
therein). Further evidence for the charged 2e Bose-liquid was provided by the quanti-
tative mapping of the specific heat of several high-Tc cuprates in zero magnetic field
to the λ curve of He4 (Alexandrov & Ranninger 1992). By applying the bipolaron
theory one can explain a startling behaviour of the thermodynamic phase transition
in a magnetic field contrasting with the resistive transition (Alexandrov et al. 1997).

In a BCS superconductor there is a well-defined step in the specific heat at the
transition temperature, this transition temperature tracks the sharp resistive tran-
sition in all magnetic fields. For most HTSCs in zero magnetic field, there is also a
well-defined λ-type peak in the specific heat at the resistive transition temperature.
However, as shown in the comprehensive experimental study by several groups (for
a review see Marcenat et al. 1995) the effect of magnetic field on the specific heat
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Bipolaronic superconductor transition in cuprates 203

Figure 4. The temperature dependence of the slope, K, violating Kohler’s rule as measured
experimentally by Harris et al. (1995) (points) and described by the bipolaron kinetics (line).

anomaly is to reduce the peak height but leaving its position largely unchanged.
The peak in specific heat is usually associated with critical fluctuations. This view-
point is reinforced when the behaviour is compared with that of liquid helium-4. On
the other hand the resistive transition shows practically parallel shift towards lower
temperatures in the Lorentz-force free geometry (Alexandrov et al. 1996b). Conse-
quently in high-Tc cuprates, the resistive behaviour does not correspond to that of
the specific heat, except for zero magnetic field. Moreover, applying the canonical
fluctuation theory based on the Ginsburg–Landau (GL) free energy one arrives at a
quite meaningless value of the zero-temperature coherence length, which appears to
be of the same order as the wavelength of holes or even less, hence invalidating the
main assumption of the GL and BCS theory.

We argue that the superfluid transition temperature in cuprates is given by the
resistive measurements and that the specific-heat anomaly owes its origin to a kink
in the chemical potential. In the following we show that a weakly interacting charged
Bose gas (CBG) in a magnetic field has precisely the property which reproduces both
the specific heat and the resistive transition of cuprates. The value of the chemical
potential is governed by the total density sum rule

nb =
∫

dε ρ(ε)f(ε), (3.1)

where ρ(ε) is the density of states and f(ε) is the Bose–Einstein distribution function,

f(ε) =
1

exp[(ε− µ)/T ]− 1
. (3.2)

The specific heat can be calculated from the derivative of the energy,

C(T,H) =
d

dT

∫
dε

ρ(ε)ε
exp[(ε− µ)/T ]− 1

. (3.3)

The result is

C(T,H) =
〈ε2〉
T 2 −

〈ε〉2
T 2〈1〉 , (3.4)
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where

〈εx〉 = −T
∫

dερ(ε)
∂f(ε)
∂ε

εx, (3.5)

We note that the specific heat calculated from equation (3.4) is invariant to a shift
in the energy, ε→ ε+ ε0 as it should be.

For a system of ideal bosons the density of states (DOS) is given by

ρ(ε) =
m3/2√ε√

2π2
, (3.6)

where m = ((m∗∗ab)
2m∗∗c )1/3. With magnetic field perpendicular to the planes the

bosons are quantized into Landau levels with the associated DOS,

ρ(ε,H) =
m3/2ωH

2
√

2π2

∞∑
n=0

[ε− ωH(n+ 1
2)]−1/2, (3.7)

where ωH = 2eH/m∗∗ab is the cyclotron frequency.
The difference between the effect of the magnetic field on resistivity and on the

specific heat becomes transparent if we calculate the specific heat in the presence
of magnetic field. For an ideal CBG the Landau energy levels are essentially one
dimensional. Thus there is no Bose–Einstein condensation in a magnetic field, and
the resistive transition is immediately suppressed such that Tc(H) = 0 for all H.
We deliberately retain the features of the non-interacting charged Bose gas which
prevents Bose–Einstein condensation to investigate the behaviour of the specific heat
in the absence of a condensate. This is to test our premise that the specific heat in
a finite magnetic field is unrelated to the condensate formation.

The numerical calculations of the chemical potential µ, equation (3.1) and the
specific heat, equation (3.4) with the exact DOS, equation (3.7) for several relative
values of the magnetic field are presented in figures 5 and 6. The characteristic
temperature at which the chemical potential changes its slope remains about Tc0 =
3.31n2/3

b /m as long as ωH � Tc0. Therefore, the position of the specific-heat anomaly
remains largely unaffected by the moderate magnetic field, figure 6. The suppression
of the maximum value of C(T,H) goes as the square root of the magnetic field,
thus even a moderate magnetic field can produce a sizable change in the value of
the specific heat at T = Tc0 without any appreciable change in the peak position.
On a quantitative level one can compare the theoretical change in the specific heat
C(T,H)−C(T,H1) with the experimental one thus eliminating all field-independent
contributions, e.g. the lattice specific heat. A parameter-free fit to the experimental
data for mercury-1223 is shown in figure 7 with H1 = 7 T and the in-plane bipolaron
mass m∗∗ab = 17.1me. The effective mass and the number of bosons nb affect only the
absolute values of C(T,H)−C(T,H1) and C(T,H) with a little effect on the anomaly
shape. One could hardly expect that our simple model would be able to describe
quantitatively the critical fluctuation effects which are responsible for the shape of
the specific heat near the λ point. Nevertheless, the result is that the theoretical shape
agrees well with the experimental evidence, figure 7. Hence the weakly interacting
CBG appears to be a fair approximation for the ground state of high-Tc cuprates.

On the other hand the theory of the Bose–Einstein condensation of CBG yields a
significant change of the condensation temperature in a magnetic field if Tcτ � 1,
where τ is the scattering time for zero energy excitations. Without any broadening of
the Landau levels Tc drops to zero at any magnetic field as mentioned above. If the
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Bipolaronic superconductor transition in cuprates 205

Figure 5. Chemical potential of CBG as a function of temperature and magnetic field,
ωH/Tc0 = 0, 0.001, 0.1, 0.2, 0.4, 1.0 (from top to bottom).

Figure 6. Specific heat anomaly of the charged Bose gas for
ωH/Tc0 = 0, 0.004, 0.008, 0.012, 0.016, 0.020, 0.024.
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Figure 7. Change in the specific heat of CBG with an applied magnetic field (different lines
correspond to H = 0, 0.52 T and 2 T, respectively) compared with the experiment (Marcenat et
al. 1995) for Hg-1223.

collision broadening of the Landau levels is taken into account the resistive critical
field is determined as (Alexandrov 1993)

Hc2(T ) = Hd(t−1 − t1/2)3/2, (3.8)

where Hd ∼ 1/(Tcτ)1/2 is a constant and t = T/Tc0. This equation fits well several
independent resistivity measurements.

4. Conclusion

In conclusion, the bipolaron kinetics allows us to describe the anomalous pow-
er laws of the normal state properties of cuprates including the logarithmic low-
temperature resistivity and the weak-field MR being at peace with the Boltzmann
theory in contrast with the ‘two different memory times’ model hypothesized by sev-
eral authors. The specific heat of a charged Bose gas shows a quantitative fit to the
experimental shape explaining a contrasting behaviour of the thermodynamic and
resistive transitions of cuprates in a magnetic field. A similarity between the specific
heat of cuprates and that of He4 supports our conclusion that high-Tc superconduc-
tors belong to the same ‘universality’ class of superfluids as He4, which cannot be
described by the BCS theory. As in the case of the metal–non-metal transitions in
liquid metals (Hensel & Edwards 1996) there is no clear dividing line between non-
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metallic underdoped cuprates and high-temperature superconductors. Cuprates are
doped Mott insulators with bipolaronic carriers irrespective to the level of doping.
I highly appreciate enlightening discussions with Y. Ando, A. Bratkovsky, H. Capellmann, P. P.
Edwards, N. Hussey, V. Kabanov, D. Khmelnitskii, W. Liang, K. R. A. Ziebeck and with the
participants of the Royal Society discussion meeting on ‘The metal–non-metal transition in
macroscopic and microscopic systems’ (March 1997).
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Discussion

P. P. Edwards (School of Chemistry, University of Birmingham, UK). (i) First of
all, let me say that Professor Alexandrov’s model is highly appealing to the exper-
imentalist working in the area of high Tc, in that he attempts to visualize (and
localize) the real space origins of possible bipolaron formation; and its subsequent
condensation to form the superconducting state. As he himself has always recount-
ed, the origins of the Bose condensation of (real-space) electron pairs dates back to
the ideas of M. R. Schafroth, S. T. Butler and J. M. Blatt and, indeed, earlier to
R. A. Ogg in 1946 in an ingenious idea linking phase separation and high-temperature
superconductivity of quenched metal–ammonia solutions. Over fifty years on, it is
indeed gratifying to see that the high-temperature superconductivity cuprates, are
possible candidates for such a mechanism.

(ii) Could I ask him to predict the upper limit to Tc, the superconducting transition
temperature, in cuprates?

A. S. Alexandrov. (i) I highly appreciate the comment. Indeed, in many of our
publications, we underlined that our microscopic theory is reminiscent of the phe-
nomenological details by Schafroth (1955) and Butler & Blatt (1955). However, dif-
ferent from their phenomenology the bipolaron theory explains the mechanism of
the charged boson formation representing an extension of the BCS theory to the
strong-coupling limit. As a result, the well-known shortcomings of the Ogg–Schafroth
model like a huge value of Tc about 10 000 K are not shared by the bipolaron theory
of superconductivity. The enhanced bipolaron mass of the order of 10me and the
reduced density of carriers in doped semiconductors about 1021 cm−3 push Tc into
the experimental range of 100 K.

(ii) Within our theory the maximum Tc is reached in the crossover region of the
electron–phonon coupling where the BCS coupling constant is about unity.

The basic phenomenon that allows the high-Tc value in this region is that of the
polaron narrowing of the band. As a result, Tc is limited by the condition of the small
polaron formation, which restricts the bare bandwidth. The maximum Tc appears to
be about 1

3ω, where ω is the optical phonon frequency. It is experimentally well doc-
umented now that in all high-Tc cuprates the Fröhlich electron–phonon interaction
is the most important with the frequency of relevant phonons about 500 K or even
higher.

T. V. Ramakrishnan (Indian Institute of Science, Bangalore, India). There is con-
siderable direct experimental evidence (e.g. from ARPES) for an electronic Fermi
surface, i.e. for zero energy electronic excitations with a measured dispersion rela-
tion. This is not compatible with simple bipolaron theories in which electrons/holes
exist only as parts of bound pairs, even above the superconducting transition tem-
perature, Tc.

A. S. Alexandrov. The results of ARPES show the non-Fermi-liquid spectral shape
of the quasi-particle spectral density. Therefore the usual interpretation of this result
as being evidence for a large Fermi surface is doubtful. Moreover quite recent studies
of under-doped Bi cuprates with ARPES have revealed a gap in the normal state.

Therefore I strongly believe that ARPES results are not as convincing as many
people think. Definitely a large Fermi surface is completely incompatible with the
semiconducting doping dependence of resistivity and with the boomerang behaviour
of the London penetration depth.
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Figure 8. Cu and O atoms in the (0, 0.5, 0)-plane of YBa2Cu3O6.95.

R. McGreevy (Studsvik Neutron Research Laboratory, Sweden). There now exists
entirely independent evidence that strongly supports the Mott–Alexandrov bipolaron
picture of high-temperature superconductivity. Figure 8 shows Cu and O atoms in
the (0, 0.5, 0)-plane of a structural model of YBa2Cu3O6.95 (the complete model
contains 576 unit cells). This model is derived directly from experimental diffraction
data, with no prior assumptions concerning lattice distortions, etc., and it is entirely
consistent with the standard crystallographic picture of the structure. However, the
model contains local correlations between the instantaneous positions of Cu(2) atoms
(in the superconducting planes) and O(4) (apical oxygen). Instantaneously about half
of the Cu(2)–O(4) bonds are ‘short’ and the other half are ‘long’ (in the picture long
bonds are not drawn). From standard bond valence calculations each short bond
corresponds to a charge transfer of 0.17|e| to the superconducting planes, so about
13 short bonds would be required to form a bipolaron. This gives as estimate for the
superconducting coherence length in the plane of 10 Å. Another simple calculation,
using the effective mass estimated from infrared data, predicts a Tc of 120 K. Both
values are close to experimental values. Further work on the effect of Co doping
and change of oxygen composition also produce results entirely consistent with the
bipolaron picture—for example, the ‘boomerang’ effect in the behaviour of Tc with
under/overdoping can easily be explained.

A. S. Alexandrov. This is clear evidence for a local lattice deformation and for an
important role of apical oxygen. The pair-distribution analysis of neutron scattering
by Egami et al., the oxygen isotope effect on the effective mass of carriers observed
recently by Müller, Zhao and co-workers as well as computer modelling studies by
Catlow et al. provide the same piece of evidence.
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